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INTRODUCTION

An accurate understanding of the noise characteristics of an
AEM system is necessary to perform unbiased manual
interpretation and to correctly weight the data in most
detection and inversion algorithms. Unfortunately, there is
very little information on the realistic, in-flight noise levels of
the available AEM systems. The values commonly published
are often for special situations such as ground-based
measurements of electronic noise or measurements from
straight and level flight at high altitude.

This conservative attitude to defining noise levels is
unsurprising because, when more complicated sources of
variability are considered, it is hard to fairly distinguish
between noise and other systematic sources of variability that
could, in principle, be monitored and incorporated into the
data processing strategy. At the moment the only source of
variability that is routinely treated in this way is the survey
altitude. However there are many other sources of geometric
variability that are currently unmonitored and
uncompensated. These often provide the major source of
along-line variability and, at least until they are fully
compensated, should be treated as noise.  In addition to this
geometry-related noise, other noise sources, such as drift in
fixed geometry systems or primary field removal errors in
variable geometry systems, are difficult to quantify.

In this paper we report the results of analysing data where the
same flight line has been flown repeatedly. Two surveys are
discussed here. One survey with a 6 frequency Dighem

Resolve system had 27 repeat lines, each about 5 km long. In
the Tempest time domain data set, we have 11 repeated lines
around 11 km in length, with 15 channels of both X and Z
components.

A MODEL FOR NOISE

Let us assume we have repeat flight lines where each along-
line sample is in the same location for all lines. Then, for any
given channel, we have data Xl,i where l is line number and i
is sample number. In the case of time domain data these X’s
are real quantities, while for frequency domain data they are
complex.

The most general linear model for noise in these data would
allow for both additive and multiplicative errors. Thus,

iliilil AREX ,,, +=
Here the E’s are multiplicative errors and A’s are additive
errors that are functions of line and sample. The R’s are the
true ground responses uncorrupted by error. They are not a
function of line number.

Analysis of this model is complicated and, initially, we work
with simplified versions where the error is either additive (E
= 1) or multiplicative (A = 0). Taking the additive case first
our error model will be
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If we then compute the three averages over lines (l), locations
(i) and both together:
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that is independent of ground response terms.

It should be noted that the 
•,lA  term will contain any “drift”

errors that are constant over the whole flight line. This means
that our error estimates will not include an estimate for this
type of noise.

If the errors are multiplicative we can achieve an equivalent
result by taking logs first and then applying the same
procedure. Thus, if we let lower case letters represent the
logarithm of a quantity (e.g. 

lili dD ,, )log( = ) we have
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If we have enough samples we might expect that the averages
of these noise terms to be either zero or one, and thus the
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residuals become estimates for the noise. That is for additive
and multiplicative errors respectively we have,

ilil AD ,, ≈  and ilild ,, ε≈

In the case of the complex, frequency domain data additive
errors should be processed on the In-phase and Quadrature
and multiplicative errors on the log(amplitude) and phase.

If we can assume that all the error terms are uncorrelated
with each other and with the ground response ground

response ( iR ) then we can make some more general

conclusions with regard to the combined multiplicative and
additive model. As we shall see these assumptions are
probably only valid for some types of system geometry but
under this model, if we compute the residuals as an additive
model we can obtain:
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and thus expressions for the variance of the errors,
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This gives us a way of estimating both multiplicative and
additive noise under these assumptions.

PROCESSING

The processing discussed here uses the 6 Dighem Resolve
frequencies as an example to illustrate the analysis of
multiplicative errors.

Preliminary processing is necessary to register the repeat
lines to a common flight line. This common line was
estimated by a least squares fitting procedure that calculates a
"2-way" least squares fit on the x,y data by minimizing the
normal deviates from the line, York (1966).

If we now look at the normal deviates of each of the repeat
lines from this common line, we get the plot shown in Figure
1 that illustrates the accuracy with which the 27 lines were
flown.

Figure 1.  Deviation from the common line for 27 Dighem
flight lines

Once a common line is established we can resample the
variables in which we are interested onto a common set of
samples. Of course this new, resampled data covers only
those sections of the data that are common to all lines. All

subsequent discussion will focus on these resampled data
rather than the raw data.

The noise values require some form of qualification regarding
the spatial processing that have been applied to the data. It is
obvious that spatial filtering can be used to alter the position
of the trade-off between noise level and spatial resolution. In
addition to a description of the processing applied to the data,
amplitude spectra of profile data were used to assist with the
characterisation of the effects of processing.

Average along-line amplitude spectra were calculated for
both frequency domain and time domain data examples. At
any point in the spatial frequency spectrum, the observed
amplitude can be attributed to a combination of geological
signal, noise levels and the spatial processing that has been
applied to the data. At higher spatial frequencies (ie short
wavelengths), the effects of low pass filter operations often
dominates. In the case of the time domain data, spatial
frequencies higher than 0.6 to 0.7 Hz had been attenuated by
spatial processing. At an average speed of 70 m/s, this
corresponds to a wavelength of 100 to 120 metres. This is
consistent with the effects of the 3 second tapered stacking
filter applied to these data. In the case of the frequency
domain data, spatial frequencies higher than 1.5 to 2.0 Hz
had been attenuated by spatial processing. At an average
speed of 33 m/s, this corresponds to a spatial wavelength of
16 to 22 metres. This is consistent with the effects of the 0.9
second tapered profile filter applied to these data.

When the residuals are computed as outlined in the previous
section they show a substantial variability due to altitude
variation between and along lines. As this variability is
usually monitored and accommodated in processing it cannot
be considered to be noise and should be removed. Figure 2
shows the residuals for the amplitude of the 385 Hz
frequency data as a function of the residual computed on the
radar altimeter data.

Figure 2.  Scatterplot showing the dependence of the
385Hz amplitude residuals (Dx) on flying height residuals
(Dh) before “height correction”.

If a linear trend is removed from the data the result is much
more evenly scattered. In some sense this removal amounts to
a height correction of the data. This is a purely statistical
"fudge" but it may not be too bad as a first approximation. All
amplitudes and phases were “height corrected” in this
manner.
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RESULTS

The profile shown in Figure 3 is of all six amplitudes for the
line with the greatest variability (line 4). They range in
colour from blue for the lowest frequency to red for the
highest. They have been raised to the power 10 to get back to
a multiplicative factor that is an estimate for 

ilE ,
. It can be

seen that not only is the pattern the same, the plots for each
frequency are also similar in amplitude. The corresponding
plot for the phases shows a similar pattern although the
amount of phase shift (< 1 degree) is small.

Of course, we would expect these data to be highly correlated
and the correlation matrix ordered from the lowest to highest
frequency for the amplitude residuals confirms this.

1.00      0.94      0.85      0.92      0.85      0.89
0.94      1.00      0.91      0.98      0.92      0.95
0.85      0.91      1.00      0.93      0.89      0.93
0.92      0.98      0.93      1.00      0.95      0.95
0.85      0.92      0.89      0.95      1.00      0.91
0.89      0.95      0.93      0.95      0.91      1.00

The Figure 3 also shows the displacement that was made to
the data to bring it onto the average line (in black). Clearly
some multiplicative process is changing both amplitude and
phase for all channels and the error process is related to the
flight parameters.

Table 1 shows the estimates for the standard deviation of the
multiplicative noise when applied to the in-phase and
quadrature components.

385 1581 3323 6135 25380 106140
1.4 % 1.7 % 2.0 % 1.8 % 2.2 % 2.3 %
1.8 % 2.3 % 2.8 % 2.5 % 3.3 % 5.2 %

Table 1. First row: frequency (Hz), second row: standard
deviation of the in-phase residuals expressed as a
percentage of the response, third row: standard deviation
of the quadrature residuals.

When a similar (multiplicative noise) analysis is conducted
for early time Tempest data (the first 7 channels, times as per
the system described in Lane et al. (2000)). The results are
somewhat different. The following points are worth noting:
• The (additive) noise measured at high altitude varies

from 21 aT to 9 aT (early to late times) in the X
component and 14 aT to 5 aT in the Z.

• X component residuals are much larger than for the Z
component.

• The X component residuals (Figure 4).are largest at late
time (σ = 2.2 % of the response) and decrease steadily
as you move to earlier times (σ =1.2 %).

• The Z component residuals (Figure 5) are (usually)
largest at early time (σ = 1.3 %) and show a slight
decrease (σ = 1.2 %) at later times.

DISCUSSION

The Dighem results show that the multiplicative error factor
appears to be roughly the same at all frequencies. Some
simple modelling of halfspace responses with changing roll
angle also shows that the effect is not a function of frequency.

However it is also clear the effect is larger in the quadrature
than the in-phase. This fact would usually indicate a residual
contribution from altitude variations but the profile pattern is
not the same as that of the altitude variations. More work is
required to fully understand the process operating here.

In the case of the Tempest data we have a situation where the
X component multiplicative factor increases with time and
the Z (generally) decreases. We can use a thin sheet model to
examine these effects analytically. Let the depth of the Tx
image below the Rx be
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where za is the aircraft altitude and rz is the bird distance
below the aircraft. When is the bird is x m behind the aircraft
then an Rx pitch angle of β reduces the Z component
response by the following factor
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For large z (late time or resistive ground) the geometric term
approaches zero and the factor becomes ~ cos(β). However,
for the X component, the corresponding formula is
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where, for large z, the geometric term increases
proportionally with z, making the multiplicative error
strongly dependent on time and/or ground conductivity. This
theory largely explains the effects we observe in the data.

It is noteworthy that this dependence of multiplicative noise
on time/conductivity is a function of the asymmetric geometry
of fixed wing systems time domain systems. The helicopter
time domain systems are usually symmetric (x approximately
equal to 0) causing the multiplicative errors to be constant for
all times and conductivities.

CONCLUSIONS

Analysis of repeated flight lines has shown that multiplicative
errors will provide the dominant source of noise for AEM
surveys where the area is even moderately conductive. Errors
typically have standard deviations of 2 % and can easily
induce fluctuations of 10%. Moreover, because of their
geometric origins, these errors are highly correlated between
channels. Frequency domain HEM, Helicopter time domain
systems and Z component fixed wing time domain systems
produce errors that are largely unrelated to
time/frequency/conductivity. This is not the case for X
component data from asymmetric systems.
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Figure 3. Dighem Line 4 amplitude residuals for all six frequencies. High frequency in red through to low in blue.
The black profile is of the transverse correction, C, required to move the observation points onto the common line (rescaled,
C/1000 +0.9).

Figure 4: Tempest Line 6 X component residuals. Early times in blue through to later times in red.

Figure 5: Tempest Line 6 Z component residuals. Early times in blue through to later times in red.


